Answer:
Option B
Explanation:
Let $f(x)=x^{25}(1-x)^{75},x\in[0,1]$
$\Rightarrow f'(x)=25x^{24}(1-x)^{75}-75x^{25}(1-x)^{74}$
$=25x^{24}(1-x)^{74}\left\{(1-x)-3x\right\}$
$=25x^{24}(1-x)^{74}\left\{(1-4x)\right\}$
We can see that f'(x) is positive for $x < \frac{1}{4}$
and f '(x) is negative for $x > \frac{1}{4}$
Hence, f(x) attains maximum at x = $\frac{1}{4}$