1)

 On the interval [0,1] , the function x25 (1-x)75 takes its maximum value at the point


A) 0

B) 14

C) 12

D) 13

Answer:

Option B

Explanation:

 Let  f(x)=x25(1x)75,x[0,1]

f(x)=25x24(1x)7575x25(1x)74

=25x24(1x)74{(1x)3x}

=25x24(1x)74{(14x)}

2852021260_v4.JPG

 We can see that f'(x)  is positive  for x<14

 and f '(x) is negative for x>14

 Hence, f(x) attains maximum at x = 14