Answer:
Option C
Explanation:
Vector perpendicular to face OAB= $\overrightarrow{n_{1}}$
= $\overrightarrow{OA}\times\overrightarrow{OB}$
= $(\hat{i}-2\hat{j}+\hat{k})\times (-2\hat{i}+\hat{j}+\hat{k})$
=$(-2-1)\hat{i}-(-2-1)\hat{j}+(1-4)\hat{k})$
= $-3\hat{i}-3\hat{j}-3\hat{k}$
Vector perpendicular to face ABC= $\overrightarrow{n_{2}}$.
= $\overrightarrow{AB}\times\overrightarrow{AC}$
= $(-3\hat{i}+3\hat{j})\times (\hat{j}+\hat{k})$
= $-3\hat{i}+3\hat{j}-3\hat{k}$
Since, angle between faces is equal to angle between their normals.
$\therefore$ $\cos\theta=\frac{\overrightarrow{n_{1}}.\overrightarrow{n_{2}}}{|\overrightarrow{n_{1}}||\overrightarrow{n_{2}}|}$
$= \frac{(-3)(3)+(-3)(3)+(-3)(-3)}{\sqrt{9+9+9}\sqrt{9+9+9}}$
$= \frac{-9-9+9}{\sqrt{27}\sqrt{27}}=-\frac{1}{3}$
$\Rightarrow\theta=\cos^{-1}(\frac{-1}{3})$