1)

dxcosx+3sinx  equals


A) 12logtan(x2+π12)+C

B) 13logtan(x2π12)+C

C) logtan(x2+π6)+C

D) 13logtan(x2π6)+C

Answer:

Option A

Explanation:

dxcosx+3sinx

= 12dx12cosx+32sinx

=12dxcosπ3cosx+sinπ3sinx

12dxcos(xπ3)

   =12sec(xπ3)dx

=12logtan(x2π6+π4)+C

  = 12logtan(x2+π12)+C