1) ∫dxcosx+√3sinx equals A) 12logtan(x2+π12)+C B) 13logtan(x2−π12)+C C) logtan(x2+π6)+C D) 13logtan(x2−π6)+C Answer: Option AExplanation:∫dxcosx+√3sinx = 12∫dx12cosx+√32sinx =12∫dxcosπ3cosx+sinπ3sinx = 12∫dxcos(x−π3) =12∫sec(x−π3)dx =12logtan(x2−π6+π4)+C = 12logtan(x2+π12)+C