Answer:
Option B
Explanation:
Gtiven equation is x2+x+1=0
⇒x=ω and x=ω2
Case I ; when x=ω
Then
∑6n=1[xn+1xn]2=∑6n=1[ωn+ω2n]2[∵1ω=ω2]
=(ω+ω2)2+(ω2+ω4)2+(ω3+ω6)2+(ω4+ω8)2+(ω5+ω10)2+(ω6+ω12)2
=(−1)2+(−1)2+(2)2+(−1)2+(−1)2+(2)2=12
Case II : when ω2
Then
∑6n=1[xn+1xn]2=∑6n=1[ω2n+ωn]2[∵1ω2=ω]
=12