1)

If A= $\begin{bmatrix}1 & 3&1 \\2 & 1&-1\\3&0&1 \end{bmatrix}$  , then rank(A) is equal to 


A) 4

B) 1

C) 2

D) 3

Answer:

Option D

Explanation:

$A= \begin{bmatrix}1 & 3&1 \\2 & 1&-1\\3&0&1 \end{bmatrix}=\begin{bmatrix}1 & 3&1 \\0 & -5&-3\\0&-9&-2 \end{bmatrix}$

[Applying R2→  R2 -2R1   , R3 →   R3 -3R1 ]

$\approx \begin{bmatrix}1 & 3&1 \\0 & -5&-3\\0&0&\frac{17}{5} \end{bmatrix}$

$[R_{3}\rightarrow R_{3}-\frac{9}{5}R_{2}]$

  $\therefore $  rank (A)=3