Answer:
Option D
Explanation:
$A= \begin{bmatrix}1 & 3&1 \\2 & 1&-1\\3&0&1 \end{bmatrix}=\begin{bmatrix}1 & 3&1 \\0 & -5&-3\\0&-9&-2 \end{bmatrix}$
[Applying R2→ R2 -2R1 , R3 → R3 -3R1 ]
$\approx \begin{bmatrix}1 & 3&1 \\0 & -5&-3\\0&0&\frac{17}{5} \end{bmatrix}$
$[R_{3}\rightarrow R_{3}-\frac{9}{5}R_{2}]$
$\therefore $ rank (A)=3