1) If △(r)=[rr31n(n+1),] , then ∑nr=1△(r) eqal to A) ∑nr=1r2 B) ∑nr=1r3 C) ∑nr=1r D) ∑nr=1r4 Answer: Option BExplanation: △(r)=[rr31n(n+1),] ⇒∑nr=1△(r)=[∑nr=1r∑nr=1r31n(n+1),] =[n(n+1)2[n(n+1)]221n(n+1),] =[n(n+1)]22−[n(n+1)]24 =[n(n+1)]22=∑nr=1r3