1)

The differential equation 

 (3x+4y+1)dx+(4x+5y+1)dy=0 represents a family of


A) circles

B) parabolas

C) ellipses

D) hyperbola

Answer:

Option D

Explanation:

The given differential equation

(3x+4y+1)dx+(4x+5y+1)dy=0         .........(i)

comparing  eq.(i) with  Mdx+Ndy=0, we get

 M=3x+4y+1

and N= 4x+5y+1

 Here,  $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial y}=4$

 Hence,  eq.(i) is exact and solution is given by

$\int (3x+4y+1)dx+\int(5y+1)dy= C$

$\Rightarrow \frac{3x^{2}}{2}+4xy+x+\frac{5y^{2}}{2}+y-C=0$

$\Rightarrow 3x^{2}+8xy+2x+5y^{2}+2y-2C=0$

$\Rightarrow 3x^{2}+2.4xy+2x+5y^{2}+2y+C'=0$  ......(ii)

 where C'=-2C

 on comparing eq.(ii) with standard form of conic section.

  ax2+2hxy+by2 +2gx+2fy+C=0

we get,  a=3, h=4, b=5

 here, h2-ab=16-15=1 >0

 Herece , the solution of differential equation represents family of hyperbolas.