Answer:
Option D
Explanation:
After n half -lives
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{t/7}$
$N=\frac{N_{0}}{e}=\frac{cN_{0}}{cN_{0}}=\left(\frac{1}{2}\right)^{5/7}$
$\Rightarrow$ $\frac{1}{e}$=$\left(\frac{1}{2}\right)^{5/7}$
Taking log on both sides , we get
$\log 1-\log e= \frac{5}{7} \log \frac{1}{2}$
$-1=\frac{5}{7}(-\log 2)$
T=$5 \log_{e}2$
Now, let t be the time after which activity reduces to half
$\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{1'/5 log_{e}2}$
$t'=5 log_{e}2$