Answer:
Option C
Explanation:
Let $z=x+iy$, then
$z+iz=x+iy+i(x+iy)=(x-y)+i(x+y)$
and $iz=i(x+iy)=-y+ix$
Then, the area of the triangle formed by these lines is
$\triangle$=$\frac{1}{2} \begin{bmatrix}x &y&1 \\(x-y) & (x+y)&1\\-y&x&1 \end{bmatrix}$
Applying $R_{2} \rightarrow R_{2}-(R_{1}+R_{3})$
$\triangle$=$\frac{1}{2} \begin{bmatrix}x &y&1 \\0& 0&-1\\-y&x&1 \end{bmatrix}$=$\frac{1}{2}(x^{2}+y^{2})$
$\Rightarrow$ $\frac{1}{2}|z|^{2}=200$ (given)
$|z|^{2}=400 \Rightarrow |z|=20$
$\therefore$ $3|z|=3 \times 20=60$