Answer:
Option C
Explanation:
Let z=x+iy, then
z+iz=x+iy+i(x+iy)=(x−y)+i(x+y)
and iz=i(x+iy)=−y+ix
Then, the area of the triangle formed by these lines is
△=12[xy1(x−y)(x+y)1−yx1]
Applying R2→R2−(R1+R3)
△=12[xy100−1−yx1]=12(x2+y2)
⇒ 12|z|2=200 (given)
|z|2=400⇒|z|=20
∴ 3|z|=3×20=60