1)

The angle between lines joining the origin to the point  of intersection of the line $\sqrt{3} x+y=2$ and the the curve $y^{2}-x^{2}=4$ is 


A) $\tan^{-1}\frac{2}{\sqrt{3}}$

B) $\frac{\pi}{6}$

C) $\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$

D) $\frac{\pi}{2}$

Answer:

Option C

Explanation:

On homogenising $y^{2}-x^{2}=4$  with the help of the line $\sqrt{3}x+y=2$, we get

$y^{2}-x^{2}=4\frac{\left(\sqrt{3}x+y\right)^{2}}{4}$

$\Rightarrow$      $y^{2}-x^{2}=3x^{2}+y^{2}+2\sqrt{3}xy$

 $\Rightarrow$  $4x^{2}+2\sqrt{3} xy=0$

On comparing with $ax^{2}+2hxy+by^{2}=0$ .

we get,

  $a=4,h=\sqrt{3}$ and $b=0$

We know that,

$\tan \theta= 2\frac{\sqrt{h^{2}-ab}}{a+b}=\frac{2\sqrt{3-0}}{4+0}$

$\therefore$ The angle between the lines is 

$\theta$=$\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$