Answer:
Option B
Explanation:
f'(x) is differentiable $\forall x \in[1,6]$
By Lagrange's mean value theorm
$f'(x)= \frac{f(6)-f(1)}{6-1}$
$f'(x) \geq 2 \forall x \in [1,6]$ (given)
$\Rightarrow$ $\frac{f(6)+2}{5} \geq 2$ [$\because$ f(1)=-2]
$\Rightarrow$ $f(6) \geq 10-2 \Rightarrow f(6) \geq 8$