Answer:
Option D
Explanation:
△(x)=[1cosx1−cosx1+sinxcosx1+sinx−cosxsinxsinx1]
Applying C3→C3+C2−C1
△(x)=[1cosx01+sinxcosx0sinxsinx1]
=cosx−cosx(1+sinx)
[∵ expanding along C3 =−cosx.sinx=−12sin2x
∵ ∫π/40△(x)dx=−12∫π/40sin2xdx
=−12[−cos2x2]π/40
=+12×2[cosπ2−cos00]
=14(0−1)=−14