Answer:
Option B
Explanation:
Volume V of a cube of side x is given by
V=$x^{3}$
$\Rightarrow$ $\frac{dv}{dx}=3x^{2}$
Let the change in x be $\triangle$x=K% of
$x=\frac{kx}{100}$
Now, the change in volume
$\triangle V=\left(\frac{dV}{dx}\right)\triangle x=3x^{3}(\triangle x)$
$= 3x^{2}\left(\frac{kx}{100}\right)=\frac{3x^{3}k}{100}$
$\therefore$ Aprroximate change in volume
$=\frac{3kx^{3}}{100}=\frac{3k}{100}x^{3}$
=3K% of original volume