Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

The value  of c from the lagrange's mean value theorm for which f(x)=25x2 in [1,5] is 


A) 5

B) 1

C) 15

D) none of these

Answer:

Option C

Explanation:

It is clear that f(x) has a definite  and unique value for each x[1,5]

Thus, for every point in the interval [1,5] the value of f(x) exists

 So, f(x)  is continuous in the interval [1,5]

Also, f(x)=x25x2, which clearly exists  for all x in an open interval (1,5)

So,  f'(x) is differentiable in [1,5]

So, there must be a value c[1,5] such that  

f(c)=f(5)f(1)51=0244

=0264=62

 but f'(c)=c25c2

     c25c2=62

     4c2=6(25c2)

   4c2=1506c210c2=150

    c2=15c=±15

       c=15[1,5]