Answer:
Option D
Explanation:
Given, two charge particles having same charge, q move with same speed
i.e, $v_{1}=v_{2}=150 km/s =1.5 \times 10^{5} m/s$
Electric force between two moving charge particle is same as they are static,
i.e, $|F_{2}|=\frac{1}{4 \pi \epsilon_{0}}.\frac{q^{2}}{r^{2}}$ ..........(i)
Magnetic force between two moving charge particles is given by
$F_{1}=\frac{\mu_{0}}{4 \pi }.\frac{q_{1}.q_{2} v_{1} v_{2}}{r^{2}}$
$[\because q_{1}=q_{2}=q$ and $v_{1}=v_{2}=v]$
$|F_{1}|=\frac{\mu_{0}}{4 \pi}\frac{q^{2} v^{2}}{r^{2}}$.........(ii)
From Eq.(i) and (ii) , we get
$\therefore$ $\frac{|F_{1}|}{|F_{2}|}=\frac{\frac{\mu_{0}}{4 \pi}\frac{q^{2} v^{2}}{r^{2}}}{\frac{1}{4 \pi\epsilon_{0}}\frac{q^{2} }{r^{2}}}= \epsilon_{0}\mu_{0}v^{2}$
$=\frac{1}{9 \times 10^{16}}\times (1.5 \times 10^{5})^{2}=2.5 \times 10^{-7}$
Hence, $\frac{F_{1}}{F_{2}}$ is $2.5 \times 10^{-7}$