1)

A body of mass 0.3 kg hangs by a spring with a force constant of 50N/m . The amplitude of oscillations is damped and reaches $\frac{1}{e}$ of its original value in about 100 oscillations. If $\omega$ and $\omega'$ are the angular frequencies of undamped and damped oscillations respectively , then percentage of  $\left(\frac{\omega-\omega'}{\omega}\right)$ is 


A) $\left(\frac{1}{800 \pi}\right)$

B) $\left(\frac{\pi^{2}}{600 }\right)$

C) $\left(\frac{1}{800\pi^{2} }\right)$

D) $\left(\frac{\pi}{400 }\right)$

Answer:

Option C

Explanation:

Hint  

    The dispalcement  of a spring mass oscillator , $X= Ae^{-bt/2m} \cos (\omega't+\phi)$

 where, $\omega'$ = angular freequency of damped

oscillation  and    $\omega'= \omega_{0}\sqrt{1-\frac{b^{2}}{4m^{2}\omega_{0}^{2}}}$