Answer:
Option B
Explanation:
As shown in the figure, two particles are moving with velocity v and acceleration a.
Let the time of collision of two particles be t, then the equation of motion
$s=ut+\frac{1}{2} at^{2}$
For particle A,
$0m =(0) t +\frac{a \cos 60^{0} t^{2}}{2}$
$\Rightarrow$ $30= \frac{0.4}{2} \times \frac{1}{2} \times t^{2}$
$t= \sqrt {300}$
Gence, in time t = $\sqrt{300}$ , both travelled equal distance in horizontal direction , so that the collision takes place.
$\Rightarrow$ $ut=\frac{1}{2} a \cos 30^{0} t^{2}( \because 30^{0}=90^{0}-60^{0}$)
$\Rightarrow$ $u= \frac{1}{2}\times 0.4 \times\frac{\sqrt{3}}{2}\times\sqrt{300}$
$\Rightarrow$ u=3 m/s
Hence , the correct option is (b)