Answer:
Option C
Explanation:
Key idea For rolling motion , the rotational linetic energy is given by expression k
$KE= \frac{1}{2} mv^{2}\left(1+\frac{k^{2}}{R^{2}}\right)$
gIven, rolling velocity on horizontal surface.
vH= 10 m/s , mass of ball , m=11kg and g=10 m/s2
Kinetic energy of rotation,
$KE= \frac{1}{2} \times 11\times (1.0)^{2}\left(1+\frac{\frac{2}{5}R^{2}}{R^{2}}\right)$
( $\because$ For solid spherical ball, $k=\sqrt{\frac{2}{5}}R$ )
$\Rightarrow$ $=11 \times 50 \times \frac {7}{5}$J
By applying the law pof energy comservation,
$ KE_{i}+v_{i}= KE_{f}+v_{f}$
$\Rightarrow$ $11\times50\times\frac{7}{5}+0=0+mgh$
$\Rightarrow$ $h= \frac{50}{10} \times \frac{7}{5}$=7 m
hence, the correct option is (c)