Answer:
Option A
Explanation:
Given, mass of a particel =m
tangential acceleration of particel , $a_{t}=ax^{2} $ and kinetic energy , K=$\beta x^{c}$
Here, as we know that torque, $\tau=F.R=I\alpha$
$\Rightarrow$ $F.R=I\frac{a_{1}}{R}$ $\left(\because \alpha=\frac{a}{R}\right)$
$\Rightarrow$ $F.R= mR^{2}\frac{aX^{2}}{R}$ ($\because I= MR^{2}$)
$\Rightarrow$ $F=max^{2}$ ............(i)
Hence, the work done is displacement of dx,
$W=\int f.dx=\int max^{2} dx$
W=$\frac{1}{3}max^{3}$ ......(iii)
from work -energy theorm,
$W= \triangle KE$
here, W= work done and $\triangle KE$ = change in kinetic energy,
$\frac{max^{3}}{3}=\beta x^{2} $ $ (\because K=\beta x^{2})$
Now, from the above equation , we get
$\beta =\frac{ma}{3}$ and c=3
Hence , the correct option is (a)