Answer:
Option B
Explanation:
Let $m ^{th} $ bright fringe of wavelength $\lambda_{m}$ and $n ^{th}$ bright fringe of wavelength $\lambda_{n}$ formed at a distance $x_{n}$ from central maxima at same point P,
i.e, they coincide , therefore ,$x_{m}=x_{n}$
$\frac{m \lambda_{m} D}{d}=\frac{n \lambda_{n} D}{d}$
$\Rightarrow$ $\frac{m}{n}=\frac{ \lambda_{n} }{\lambda_{m}}$
Putting the given values, we get
= $\frac { 600 \times 10^{-9}}{400 \times 10 ^{-9}}$
[ Given , $\lambda_{m}$= $400 \times 10 ^{-9} $ m, $\lambda_{n}$ = $600 \times 10 ^{-9} $ m]
$\therefore $ $\frac{m}{n} = \frac{3}{2}$
So, least integral values of m and n satisfying above requirement are m=3 and n=2.