1)

A vertical spring mass system has the same line period as simple pendulum undergoing small oscillations .Now , both of them are put in an elevator going downwards with an  acceleration 5 m/s2 . The ratio of time period of the spring mass system to the time period of the pendulum is (Assume, acceleration due to gravity , g= 10 m/s2)

672021592_p2.PNG


A) $\sqrt{\frac{3}{2}}$

B) $\sqrt{\frac{2}{3}}$

C) $\frac{1}{\sqrt{2}}$

D) $\sqrt{2}$

Answer:

Option C

Explanation:

 We know that time period of a spring mass system

  $T_{1}=2\pi\sqrt{\frac{m}{k}}$

 where, m= mass of body

 and k= force constant of the spring

 Time period of simple pendulum

 $T_{2}=2\pi\sqrt{\frac{l}{g}}$

 According to the  question, initially time period of a spring mass system. $T_{1}$= time period of simple pendulum , $T_{2}$

 $2\pi\sqrt{\frac{m}{k}}=2\pi\sqrt{\frac{l}{g}}$

 $\sqrt{\frac{m}{k}}=\sqrt{\frac{l}{10}}$    .........(i)   [ $\because   g=10 m/s^{2}$]

 when both of them are put in an elevator going downwards with an acceleration 5 m/s2 , then no effect occurs on the time period of spring mass system.

 i.e,  $T_{1}'=T_{2}=2\pi\sqrt{\frac{m}{k}}$

 But time period of simple pendulum changes in elevator and is given by

 $T_{2}'=2\pi\sqrt{\frac{l}{g_{eff}}}$ , where $g_{eff}$= g-a = effective

 acceleration of the pendulum when elevator is accelerating  downwards with a m/s2

$T_{2}'=2\pi\sqrt{\frac{l}{g-5}}=2\pi \sqrt{\frac{l}{5}}$

$\therefore$     $\frac{T_{1}'}{T_{2}'}=\frac{2\pi\sqrt{\frac{m}{k}}}{2\pi\sqrt{\frac{l}{5}}}=\frac{\sqrt{l/10}}{\sqrt{l/5}}$                             [From Eq. (i)]

$\therefore$      $\frac{T_{1}'}{T_{2}'}=\frac{1}{\sqrt{2}}$

Hence, the ratio of time period of the spring mass system to the time period of the pendulum is   $\frac{1}{\sqrt{2}}$