1)

Ball-I  is dropped from the top of a building from rest . At the same moment, ball -2 is thrown upward towards ball -1 with a speed 14 m/s from a point 21 m below the top of building . How far  will the ball -1 have dropped when it passes ball-2, (Assume , acceleration due to gravity  , g=10 $m/s^{2}$)


A) $\frac{45}{4}$ m

B) $\frac{52}{6}$ m

C) $\frac{37}{2}$ m

D) $\frac{25}{2}$ m

Answer:

Option A

Explanation:

Suppose that both the balls meet at a distance h from ball -1 after time t from the start as shown in the figure,

 For downward motion of ball-1, from second equation  of the motion

672021295_a5.PNG

  $h= ut+ \frac{1}{2} gt^{2}$ ......(i)

 h= $0 \times t + \frac {1}{2} \times 10 t^{2}$

                                                 [ $\because u=0$]

 h= $5 t^{2}$  ..........(ii)

 For upward motion of ball -2 , from second equation of the motion.

 $h= vt- \frac{1}{2}g t^{2}$ ........(iii)

 Given, speed of ball -2 , v=14 m/s , acceleration due to gravity ,$ g=10 m/s^{2}$

 Substituting these values in Eq.(iii) , we ger

 $21-h=14 t -\frac{1}{2} \times 10 t^{2}$

$\Rightarrow$    $21-h=14t-5t^{2}$  ............(iv)

 Adding Eq.(ii) and (iv) , we get

 21=14 t

 $\Rightarrow$     $ t= \frac{3}{2}s =1.5 s$

 $\therefore$   Eq.(ii)  , we get

  h= $ 5 \times  (1.5)^{2}$= 11.25 m

   = $\frac{45}{4}$m

 Therefore , the ball-1 will have dropped  $\frac{45}{4}$ m  when it passes ball-2