Answer:
Option C
Explanation:
$\lim_{x \rightarrow 0}\frac{\sqrt{x^{2}+100}-10}{x^{2}}$
=$\lim_{x \rightarrow 0}\frac{(\sqrt{x^{2}+100}-10)(\sqrt{x^{2}+100}+10)}{x^{2}(\sqrt{x^{2}+100}+10)}$
=$\lim_{x \rightarrow 0}\frac{x^{2}+100-100}{x^{2}(\sqrt{x^{2}+100}+10)}$
= $\lim_{x \rightarrow 0}\frac{1}{\sqrt{x^{2}+100}+10}$
= $\frac{1}{10+10}= \frac{1}{20}=0.05$
Hence, option (c) is correct