1) ∑16r=1(sin2rπ17+icos2rπ17)= A) 1 B) -1 C) i D) -i Answer: Option DExplanation:We have , ∑16r=1(sin2rπ17+icos2rπ17)=i∑16r=1(cos2rπ17−isin2rπ17) =i∑16r=1e−i2rπ17 =i∑16r=1Kr [where, K=e−2iπ17] =i[k(1−k161−k)]=i(k−k17)(1−k) =i(k−1)(1−k) [∵k17=e−2iπ=cos(2π)−isin(2π)=1] =-i