Answer:
Option D
Explanation:
We have
$\left(\frac{1+iz}{1-iz}\right)^{4}$ =P
$\Rightarrow$ $\left(\frac{i-z}{i+z}\right)^{4} =P$
$\Rightarrow$ $\left(\frac{z-i}{z+i}\right)^{4} =P$
$\Rightarrow$ $|\frac{z-i}{z+i}|^{4} =|P|$
$\Rightarrow$ $|\frac{z-i}{z+i}|^{4} =1$
$\Rightarrow$ $|z-i|^{4}= |z+i|^{4}$
$\Rightarrow$ |z-i|=|z+i|
$\therefore$ z lies on perpendicular bisector of i and -i
$\therefore$ z lies on y-axis
$\therefore$ z has all complex roots