Answer:
Option B
Explanation:
We have
$z= \sqrt{2}\sqrt{1+\sqrt{3i}}\Rightarrow z=\sqrt{2+2\sqrt{3i}}$
$z=\sqrt{(\sqrt{3}+i)^{2}}\Rightarrow z=\pm (\sqrt{3}+i)$
z lie in third quadrant
$\therefore$ z=$-\sqrt{3}-i$
$\Rightarrow |z|=\sqrt{(-\sqrt{3})^{2}+(-1)^{2}}=\sqrt{3+1}=\sqrt{4}=2$ and
$\tan\theta=|\frac{-1}{-\sqrt{3}}|=\frac{1}{\sqrt{3}}\Rightarrow\theta=\frac{\pi}{6}$
Since $\theta$ lie in 3rd quadrant
$\therefore$ $arg(z)=-\left(\pi-\frac{\pi}{6}\right)= -\frac{5 \pi}{6}$
Hence, $z=2\left( \cos \left( -\frac{5 \pi}{6}\right) +i \sin \left(-\frac{5 \pi}{6}\right)\right)$