1) if the function f:[a,b]→[−√34,12] defined by f(x)=[11111+sinx11+cosx11] is one-one and onto , then A) a=−π4,b=π6 B) a=−π2,b=π2 C) a=−π6,b=π4 D) a=−π,b=π Answer: Option AExplanation:We have, f:[a,b]→[−√34,12] f(x)=[11111+sinx11+cosx11] f(x)=[1100sinx01+cosx−cosx−cosx] [C3→C3−C1,C2→C2−C1] f(x) =-sin x cos x f(x)=−12sin2x f(x)∈[√34,12] ∴ −√34≤−12sin2x≤12 ⇒ −1≤sin2x≤√32 ⇒ −π4≤x≤π6 ∴ a=−π4,b=π6