Answer:
Option D
Explanation:
We have,
$T_{r}=r[n-(r-1)]$
= r(n-r+1)
= $nr-r^{2}+r$
$\therefore$ $\sum_{r=1}^{n}T_{r}=\sum_{r=1}^{n} (nr-r^{2}+r)$
$= \sum_{r=1}^{n}[(n+1)r-r^{2}]=(n+1)\sum_{r=1}^{n}r-\sum_{r=1}^{n}r^{2}$
$= \frac{(n+1)n(n+1)}{2}-\frac{n(n+1)(2n+1)}{6}$
$= \frac{n(n+1)}{2}\left[(n+1)-\left(\frac{2n+1}{3}\right)\right]$
$= \frac{n(n+1)}{2}\left[\frac{3n+3-2n-1}{3}\right]$
$= \frac{n(n+1)}{2}\left[\frac{n+2}{3}\right]$
$= \frac{n(n+1)(n+2)}{6}$
$\therefore$ $\alpha$ = $\frac{1}{6}$