1) The domain of the function f(x)=1√[x]2−[x]−2 is Here [x] denotes the greatest integer not exceeding the value of [x] A) (−∞,−2)∪(1,∞) B) (−∞,−2)∪(0,∞) C) (−∞,−2)∪(2,∞) D) (−∞,−1)∪(3,∞) Answer: Option DExplanation:We have, f(x)=1√[x]2−[x]−2 f(x0 is defined when [x]2−[x]−2>0 ([x]−2)([x]+1)>0 [x] >2 and [x] <-1 x≥3and x<-1 ∴ Domain of f(x) is x ∈(−∞,−1)∪(3,∞)