Answer:
Option D
Explanation:
We have $\frac{dy}{dx}=1- \cos (y-x) \cot (y-x) $
Put $y-x = v \Rightarrow \frac{dy}{dx}=1+\frac{dv}{dx}$
$\therefore$ $1+ \frac{dv}{dx}=1- \cos v \cot v $ $\Rightarrow$ $\frac{dv}{dx}= -\frac{\cos ^{2} v}{\sin v}$
$\Rightarrow$ $-\int\frac{\sin v}{\cos^{2} v}dv=\int dx\Rightarrow -\int \sec v \tan v dv=dx$
$\Rightarrow -\sec v=x+c\Rightarrow x+\sec(y-x)=c$