Answer:
Option A
Explanation:
I= ∫π2π4cot9xdx
I=∫π2π4cos9xsin9xdx
put sin x=t, cos x dx=dt
x=π4,t=1√2,x=π2,t=1
∴ I=∫11√2(1−t2)4t9dt
I=∫11√2(1−4t2+6t4−4t6+t8t9)dt
I=∫11√2(t−9−4t−7+6t−5−4t−3+1t)dt
I=[18t8−46t6+64t4−42t2+logt]11/√2
I= [(18−46+64−42+0)−(2−326−6−4−12log2)]
I= −724+12log2