Answer:
Option D
Explanation:
We have,
$ydx-xdy+3x^{2}y^{2}e^{x^{3}}dx=0$
$\frac{ydx-xdy}{y^{2}}+3x^{2}e^{x^{3}}dx=0$
$\Rightarrow$ $d\left(\frac{x}{y}\right)+d(e^{x^{3}})=0$
On integrating , we get
$\frac{x}{y}+e^{x^{3}}$=c
putting x=y=1, we get
c=1+e
$\therefore$ $\frac{x}{y}+e^{x^{3}}$ =1+e
x+$y\left( e^{x^{3}}-(1+e)\right)+x=0$