1)

 If   2x2(2x2+α)(x2+5)dx=53tan1x523tan1x2+c, then α =


A) 1

B) 2

C) 3

D) 4

Answer:

Option D

Explanation:

We have,

2x2(2x2+α)(x2+5)dx=53tan1x523tan1x2+c, 

 On differentiating  both sides , we get

2x2(2x2+α)(x2+5)

= 53(11+x25)1523(11+x22)×12

     2x2(2x2+α)(x2+5)=13(55+x222+x2)

     2x2(2x2+α)(x2+5)=x2(x2+2)(x2+5)

       2x2(2x2+4)(x2+5)α=4