Answer:
Option D
Explanation:
We have,
∫2x2(2x2+α)(x2+5)dx=√53tan−1x√5−√23tan−1x√2+c,
On differentiating both sides , we get
2x2(2x2+α)(x2+5)
= √53(11+x25)1√5−√23(11+x22)×1√2
⇒ 2x2(2x2+α)(x2+5)=13(55+x2−22+x2)
⇒ 2x2(2x2+α)(x2+5)=x2(x2+2)(x2+5)
⇒ 2x2(2x2+4)(x2+5)⇒α=4