Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If f(x)  = {ax+b,ifx1ax2+c,if1<x2dx2+1x,ifx2

is differentiable on R, then ad-bc=


A) 0

B) 1

C) -1

D) 2

Answer:

Option C

Explanation:

We have ,

f(x)  = {ax+b,ifx1ax2+c,if1<x2dx2+1x,ifx2

   f(x)  is differentiable , hence f(x) must be continuous

    limx1f(x)=limx1+f(x)

  a+b=a+c b=c   ........(i)

and  limx2f(x)limx2+f(x)

          4a+c = 4d+12

     8a+2c=4d+1    ........(ii)

      f(x)  is differentiable on R

      f(x)={a,ifx<12ax,if1<x<2d1x2,ifx>2

 f(x) is differentiable at x=1

       a=2a   a=0  .....(iii)

 and f(x)  is differentiable at x=2

         4a=d-14   d= 14  .......(iv)

From Eqs.(ii) and (iv)  ,we get

 c=1=b

  ad-bc=0×141=-1