Answer:
Option C
Explanation:
We have ,
f(x) = {ax+b,ifx≤1ax2+c,if1<x≤2dx2+1x,ifx≥2
∵ f(x) is differentiable , hence f(x) must be continuous
∴ limx→1−f(x)=limx→1+f(x)
⇒ a+b=a+c ⇒ b=c ........(i)
and limx→2−f(x)limx→2+f(x)
⇒ 4a+c = 4d+12
⇒ 8a+2c=4d+1 ........(ii)
∵ f(x) is differentiable on R
∴ f(x)={a,ifx<12ax,if1<x<2d−1x2,ifx>2
f(x) is differentiable at x=1
∵ a=2a ⇒ a=0 .....(iii)
and f(x) is differentiable at x=2
∵ 4a=d-14⇒ d= 14 .......(iv)
From Eqs.(ii) and (iv) ,we get
c=1=b
∴ ad-bc=0×14−1=-1