Answer:
Option B
Explanation:
Bag 1 contains 3 red and 4 black balls bag II contains 5 red and 6 black balls
P(I)=$\frac{1}{2}$,P(II)=$\frac{1}{2}$
$P\left(\frac{R}{I}\right)=\frac{3}{7}, P\left(\frac{R}{II}\right)=\frac{5}{11}$
$\therefore$ Required probability
$P\left(\frac{II}{R}\right)=\frac{P(II) \times P\left(\frac{R}{II}\right)}{P(I)\times P(R/I)+P(II)+P\left(\frac{R}{II}\right)}$
$=\frac{\frac{1}{2}\times \frac{5}{11}}{\frac{1}{2}\times\frac{3}{7}+\frac{1}{2}\times\frac{5}{11}}=\frac{35}{68}$