Answer:
Option A
Explanation:
We have,
OA=ˆi+2ˆj+3ˆk and OB= 4ˆi+ˆk
∵ OA×OB=[ˆiˆjˆk123401]=2ˆi+11ˆj−8ˆk
equation of line passing through B and parallel to OA x OB is
r= 4ˆi+ˆk+λ(2ˆi+11ˆj−8ˆk)
r= (4+2λ)ˆi+11λˆj+(1−8λ)ˆk
Distance from B to line is √189
∴ √189= √(4+2λ−4)2+(11λ)2+(1−8λ−1)2
189= 4λ2+121λ2+64λ2
189= 189 λ2
λ= ± 1
∴ Position vector ;ie on line B
r= 6ˆi+11ˆj−7ˆk