Answer:
Option D
Explanation:
Given
BC=a, AC-b
AB=c, AD=P1
BE= p2 , CF= p3
In $\triangle ABC $
$\sin B=\frac {p_{1}}{c} \Rightarrow \frac{1}{p_{1}}= \frac {1}{c \sin B}$
Similarly , $\frac{1}{p_{2}}=\frac{1}{a \sin C}$
and $\frac{1}{p_{1}}=\frac{1}{b \sin A}$
$\therefore$ $\frac{1}{p_{1}}+\frac{1}{p_{2}}-\frac{1}{p_{3}}=\frac{1}{c\sin B}+\frac{1}{a\sin C}-\frac{1}{b\sin A}$
=$\frac{a}{2 \triangle}+\frac{b}{2 \triangle}-\frac{c}{2 \triangle}=\frac{1}{2 \triangle}(a+b-c)=\frac {2(s-c)}{2 \triangle}=\frac{(s-c)}{\triangle}$
$\therefore$ $\frac{1}{p_{1}}+\frac{1}{p_{2}}-\frac{1}{p_{3}}$= $\frac{s }{\triangle}$