Answer:
Option C
Explanation:
Given , A+B+C =270°
and cos2A+cos2B+cos2C+4sinAsinBsinC
= 2cos(A+B)cos(A−B)+1−2sin2C+4sinAsinBsinC
=2cos(2700−C)cos(A−B)+1−2sin2C+4sinAsinBsinC
= 1−2sinC[cos(A−B)+sinC]+4sinAsinBsinC
= 1−2sinC[cos(A−B)+sinC]+4sinAsinBsinC
=1−2sinC[cos(A−B)−cos(A+B)]+4sinAsinBsinC
=1−4sinAsinBsinC+4sinAsinBsinC=1