Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If the point (k1k,k2k) lies on the  locus of z satisfying  the inequality  |z+3i3z+i|  <1, then the interval in which k lies is 


A) (,2)(3,)

B) [2,3]

C) [1,5]

D) (,1)(5,)

Answer:

Option D

Explanation:

Given ,

  |z+3i3z+i|  <1

 |x+(y+3)i3(x+iy)+i|<1  [Let z=x+iy]

  | x+(y+3)i|  < | 3x+(3y+1)i|

    x2+(y+3)2<9x2+(3y+1)2

      x2+y2+6y+9<9x2+9y2+6y+1

      8x2+8y28>0

        x2+y21>0

 k1k,k2k lie on locus of z

        (k1)2k2+(k2)2k21>0

     k22k+1+k24k+4k2>0

  k26k+5>0(k5)(k1)>0

     k ε  (,1)(5,)