Answer:
Option D
Explanation:
Given ,
|z+3i3z+i| <1
|x+(y+3)i3(x+iy)+i|<1 [Let z=x+iy]
| x+(y+3)i| < | 3x+(3y+1)i|
⇒ x2+(y+3)2<9x2+(3y+1)2
⇒ x2+y2+6y+9<9x2+9y2+6y+1
⇒ 8x2+8y2−8>0
⇒ x2+y2−1>0
k−1k,k−2k lie on locus of z
∴ (k−1)2k2+(k−2)2k2−1>0
⇒ k2−2k+1+k2−4k+4−k2>0
⇒ k2−6k+5>0⇒(k−5)(k−1)>0
⇒ k ε (−∞,1)∪(5,∞)