Answer:
Option A
Explanation:
We have ,
$\begin{bmatrix}1 \\2 \\\lambda \end{bmatrix}$ (1 2 $\lambda$) $\begin{bmatrix}x \\y \\z\end{bmatrix} =0 $
$\begin{bmatrix}1 & 2 &\lambda \\2 & 4 & 2\lambda \\\lambda &2\lambda &\lambda^{2} \end{bmatrix}\begin{bmatrix}x \\y \\z \end{bmatrix}=0$
Let A= $\begin{bmatrix}1 & 2 &\lambda \\2 & 4 & 2\lambda \\\lambda &2\lambda &\lambda^{2} \end{bmatrix}$
|A| = $1(4 \lambda^{2}-4 \lambda^{2})-2(2 \lambda^{2}-2 \lambda^{2})+\lambda (4 \lambda-4 \lambda)$
|A|= 0, $\forall \lambda \epsilon R$
$\therefore$ the given syste m has non trivial solution.