Answer:
Option B
Explanation:
We have ,
y =$\sqrt{x}$, x= $\sqrt{y}$ ,x=1 ,x=4
The graph of curves are
Area of shaded region
$=\int_{1}^{4} (x^{2}-\sqrt{x})dx=\left[\frac{x^{3}}{3}-\frac{2}{3}(x)^{3/2}\right]_{1}^{4}$
= $\left(\frac{64}{3}-\frac{16}{3}\right)-\left(\frac{1}{3}-\frac{2}{3}\right)$
= $\frac{64-16-1+2}{3}=\frac{49}{3}$