Answer:
Option C
Explanation:
We have,
$f(x)=2x^{3}-3x^{2}-x+1$
Let
$g(x)=\frac{x^{4}}{2}-x^{3}-\frac{x^{2}}{2}+x$
$g(-1)=\frac{1}{2}+1-\frac{1}{2}-1=0$
and g(0)= 0
$\therefore$ f(x)=0 has roots lie in [-1,0]
Similarly , g(0)=g(1)=0
$\therefore$ f(x)=0 has roots lie in [0,1].
$g(2)=\frac{16}{2}-8-\frac{4}{2}+2=8-8-2+2=0$
g(1)= g(2)=0
But , g(-2)≠ 0
$\therefore$ f(x)=0 has roots in every interval except $I_{4}$