Processing math: 100%


1)

If 'a' is the point of discontinuity  of the function 

f(x)={cos2xfor<x<0e3xfor0x<3x24x+3,for3x6log(15x89)x6,forx>6

Then ,   limxax29x35x2+9x9=


A) 1

B) 0

C) 6

D) 3

Answer:

Option A

Explanation:

We have ,

f(x)={cos2xfor<x<0e3xfor0x<3x24x+3,for3x6log(15x89)x6,forx>6

limx3e3x=e9  and   limx3+x24x+3=912+3=0

 Clearly ,   limx3f(x)limx3+f(x)

   f(x)   is discontinuous at x=3

a=3,

Now,   limx3x29x35x2+9x9=limx3(x3)(x+3)(x3)(x22x+3)

  =  3+3(3)22(3)+3=22=1