Loading [MathJax]/jax/element/mml/optable/MathOperators.js


1)

If 'a' is the point of discontinuity  of the function 

f(x)={cos2xfor<x<0e3xfor0x<3x24x+3,for3x6log(15x89)x6,forx>6

Then ,   limxax29x35x2+9x9=


A) 1

B) 0

C) 6

D) 3

Answer:

Option A

Explanation:

We have ,

f(x)={cos2xfor<x<0e3xfor0x<3x24x+3,for3x6log(15x89)x6,forx>6

  and   \lim_{x \rightarrow 3+} x^{2}-4x+3=9-12+3=0

 Clearly ,   \lim_{x \rightarrow 3-}f(x)\neq \lim_{x \rightarrow 3+}f(x)

 \therefore  f(x)   is discontinuous at x=3

\therefore a=3,

Now,   \lim_{x \rightarrow 3}\frac{x^{2}-9}{x^{3}-5x^{2}+9x-9}=\lim_{x \rightarrow 3}\frac{(x-3)(x+3)}{(x-3)(x^{2}-2x+3)}

  =  \frac{3+3}{(3)^{2}-2(3)+3}= \frac{2}{2}=1