Answer:
Option B
Explanation:
Equation of ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$
Foci =(0,$\pm 3$)
$\Rightarrow$ $e_{1}=\sqrt{1-\frac{16}{25}}=\frac{3}{5}$ given $e_{1} e_{2}$ =1
(where $e_{2}$ is eccentricity of hyperbola )
Let equation of hyperbola -$\frac{x^{2}}{a^{2}}+\frac{ y^{2}}{b^{2}}$=1
its passes through (0, $\pm 3$)
$\therefore$ $b^{2}$=9
$\Rightarrow$ $ e_{2}=\sqrt{1+\frac{a^{2}}{b^{2}}}$
$\Rightarrow$ $ e_{2}^{2}=1+\frac{a^{2}}{b^{2}}$
$\Rightarrow$ $ \frac{1}{e_{2}^{2}}=1+\frac{a^{2}}{9}\Rightarrow \frac{25}{9}=1+\frac{a^{2}}{9}$
$\Rightarrow$ $a^{2}$=16
Hence, the equation of hyperbola $\frac{y^{2}}{9}-\frac{x^{2}}{16}=1$