Answer:
Option A
Explanation:
Equation of tangent at (3√3cosθ,sinθ) on the ellipse x227+y21=1 is
3√3xcosθ27+ysinθ1=1
x3√3cosθ+ysinθ1=1
Sum of intercepts of tangent
i.e, L=3√3secθ+cosecθ
∵dLdθ=3√3secθtanθ−cosecθcotθ
For maxima or minima dLdθ= 0
3√3secθtanθ−cosecθcotθ=0
tan3θ=33√3⇒tanθ=1√3⇒θ=π6
Minimum at θ = π6