Answer:
Option C
Explanation:
n=10, p=12, q= 12
∴ Required probability = P(r\geq6)
=P(r=6)+P(r=7)+P(r=8)+P(r=9)+P(r=10)
=^{10}C_{6}\left(\frac{1}{2}\right)^{10}+^{10}C_{7}\left(\frac{1}{2}\right)^{10}+^{10}C_{8}\left(\frac{1}{2}\right)^{10}+^{10}C_{9}\left(\frac{1}{2}\right)^{10}+\left(\frac{1}{2}\right)^{10}
=\frac{1}{2^{10}}\left(^{10}C_{6}+^{10}C_{7}+^{10}C_{8}+^{10}C_{9}+1\right)
=\frac{1}{2^{10}}\left(210+120+45+10+1\right)=\frac{386}{2^{10}}=\frac{193}{2^{9}}