Answer:
Option C
Explanation:
n=10, $p= \frac{1}{2}$, q= $\frac {1}{2}$
$\therefore$ Required probability = $P(r\geq6)$
$=P(r=6)+P(r=7)+P(r=8)+P(r=9)+P(r=10)$
$=^{10}C_{6}\left(\frac{1}{2}\right)^{10}+^{10}C_{7}\left(\frac{1}{2}\right)^{10}+^{10}C_{8}\left(\frac{1}{2}\right)^{10}+^{10}C_{9}\left(\frac{1}{2}\right)^{10}+\left(\frac{1}{2}\right)^{10}$
$=\frac{1}{2^{10}}\left(^{10}C_{6}+^{10}C_{7}+^{10}C_{8}+^{10}C_{9}+1\right)$
$=\frac{1}{2^{10}}\left(210+120+45+10+1\right)=\frac{386}{2^{10}}=\frac{193}{2^{9}}$