Answer:
Option B
Explanation:
Let A be the events sum appeared on two unbiased dice is 7 and B be the event sum appeared on two unbiased dice is either 7 or 11.
$\therefore$ P(A) =$\frac{6}{36}$, P(B) = $\frac{6}{36}+\frac{2}{36}=\frac{2}{9}$
$\therefore$ Required probability,
= $P(A)+P(\overline{B}A)+P(\overline{B}\overline{B}A)+P(\overline{B}\overline{B}\overline{B}A)+.....$
=$\frac{1}{6}+\frac{7}{9}\times\frac{1}{6}+\left(\frac{7}{9}\right)^{2}\times\frac{1}{6}+$.....
= $\frac{1}{6}\left(\frac{1}{1-\frac{7}{9}}\right)=\frac{1}{6}\times\frac{9}{2}=\frac{3}{4}$