Answer:
Option C
Explanation:
Let α,β,γ are roots of equation
x3−ax2+ax−1=0 ..........(i)
∴ α+β+γ=a
αβ+βγ+αγ=a
αβγ=−1
Cubic equation whose roots α2, β2, γ2 is
x2−(α2+β2+γ2)x2+(α2β2+β2γ2+α2γ2)x−α2β2γ2=0 ........(ii)
Equi .(i) and (ii) are identical.
∴aα2+β2+γ2=aα2β2+β2γ2+α2γ2=1α2β2γ2
a= α2+β2+γ2 [ αβγ=−1]
a= (α+β+γ)2-2(αβ+βγ+γα)
a= a2−2a⇒a2=3a
⇒ a=3 [ ∵ a is non-zero real ]