Answer:
Option A
Explanation:
We have,
$\frac{x}{x+1}= x(1+x)^{-1}=x(1-x+x^{2}-x^{3}+x^{4}-...)$
= $x-x^{2}+x^{3}-x^{4}+x^{5}-$
$= \sum_{n=0}^{\infty}(-1)^{n} x^{n+1}$
$\therefore$ Assertion is true
Reason (R)=$(1+x)^{-1}$ = $ 1-x+x^{2}-x^{3}$+.....
is also true , (A) and (R) are true , (R) is correct explanation of (A)