Answer:
Option C
Explanation:
Melting point of camphor= $176 ^{0}$ C
$ (K_{f})$ for camphor=40 K kg mol-1
Mass of hydrocarbon (wB)=0.02 g
Mass of camphor (wA)=0.8 g
Temperature of camphor (at which it melts)= $156.77^{0} C$
Thus, $\triangle T_{f}$ for camphor =176-156-77= $19.23^{0} C$=19.23 K
$\therefore$ depression in freezing point ,
$\triangle T_{f}$ = $\frac{k_{f}\times w_{B}}{M_{B}}\times\frac{1000}{w_{A}}$
$19.23= \frac{40\times0.02\times1000}{M_{B}\times0.8}$
Molar mass of solute (MB)
=$\frac{40\times0.02\times1000}{19.23\times0.8}=52$
$\therefore$ Empricial formula = CH
Empirical formula weight =12+1=13
Multiple (n) = Molecular weight/ Empirical formula weight = $\frac{52}{13}=4$
Thus, molecular formula = (CH)4= C4H4